Colin C. Caprani & Eugene J. OBrien Dublin Institute of Technology & University College Dublin

ICOSSAR '09

13 September – 17 September 2009,

Osaka, Japan

Estimating Extreme Highway Bridge Traffic Load Effects

Introduction

Statistics in the hands of an engineer are like a lamppost to a drunk – they're used more for support than illumination.

- A. E. Housman.

Extreme Value Methods I

Block maxima approach – data modelled using GEV distribution:

Extreme Value Methods I

Block maxima approach – data modelled using GEV distribution:

Extreme Value Methods I

Block maxima approach – data modelled using GEV distribution:

Extreme Value Methods II

Peaks Over Threshold (POT) approach – data modelled using GPD distribution:

Extreme Value Methods II

Peaks Over Threshold (POT) approach – data modelled using GPD distribution:

Extreme Value Methods II

Peaks Over Threshold (POT) approach – data modelled using GPD distribution:

Extreme Value Methods III

Differences in the approaches:

Estimating Extreme Highway Bridge Traffic Load Effect

C.C. Caprani & E.J. OBrien

Extreme Value Methods IV

Choice between the approaches:

- Gives different results
- Often subjective
- Difficult to assess **best** model

As the GEV and GPD are different distributions:

- They are **non-nested** models
- Cannot calculate a statistical significance of differences

Box-Cox GEV Distribution I

The **BCGEV** distribution:

- Introduced by Bali (2003) for use in economic modelling
- Includes both GEV and GPD distributions through a model parameter, λ
- Maintains the usual GEV/GPD parameter set, (μ, σ, ξ):

$$H(s) = \left(\frac{1}{\lambda}\right) \left(\left[\exp\left\{-\left[h(s)\right]_{+}^{1/\xi}\right\}\right]^{\lambda} - 1 \right) + 1 \quad \text{where} \quad h(s) = 1 - \xi \left(\frac{s - \mu}{\sigma}\right)$$

Thus, as:

- $\lambda \rightarrow 1$, BCGEV \rightarrow GEV distribution
- $\lambda \rightarrow 0$, BCGEV \rightarrow GPD distribution (by L'Hopital's rule)

Benefit: GEV and GPD are now nested models and can be compared statistically.

Estimating Extreme Highway Bridge Traffic Load Effect

C.C. Caprani & E.J. OBrien

Box-Cox GEV Distribution II

Application of the BCGEV model:

- A high threshold is set about 2 standard deviations above the mean of the parent data
- Data arranged sequentially: $s_1 \leq \dots s_r \leq \dots s_n$

Estimation of BCGEV:

- Maximum likelihood estimation not robust, so
- Non-linear regression estimation used:

$$\log\left[\left(-\frac{1}{\lambda}\right)\log\left(1+\lambda\left(\frac{r}{n+1}-1\right)\right)\right] = \frac{1}{\xi}\log\left[1-\xi\left(\frac{s_r-\mu}{\sigma}\right)\right] + \eta$$
 Residual

Minimize the sum of the squares of the residuals (SSR), $\Sigma \eta^2$

Bridge Traffic Loading I

- Using real traffic measured using Weigh-In-Motion
- Traffic characteristics are statistically modelled
- Monte Carlo simulation allows more traffic to be studied
- Load effects are calculated using influence lines of interest

Bridge Traffic Loading II

- 5 days of data from the A6 Paris-Lyon motorway is used as basis
- A 1000-day Monte Carlo traffic sample is generated
- Thus 1000 daily maximum static load effects
- Consider 5 bridge lengths of 20, 30, 40, 50, 60 m

3 load effects considered:

- LE1 moment at B;
- LE2 moment at E;
- LE3 shear at A.

The optimal statistical extrapolation of this data set to determine lifetime load effect is what is considered in this work.

Bridge Traffic Loading III

In bridge traffic loading, different loading event types occur:

These loading events have different statistical distributions...

Use a **composite distribution** of load effect (Caprani et al 2008):

Composite
Distribution

$$G_C(z) = \prod_{i=1}^N G_i(z)$$
Individual Event-type
Distribution

Basis of BCGEV Analysis

For 3 load effects, 5 bridge lengths and each loading event type,

There are 41 data sets to be modelled.

11 thresholds are applied to the daily maximum data:

- In 0.5 standard deviation steps
- From k = -2.5 to k = +2.5 standard deviations about the mean

BCGEV model:

- Estimation of 'model parameter', λ is not robust
- Thus λ varied from 0 to 1 in 0.01 steps
- Best fit of remaining parameters then found for each λ .

Optimum BCGEV Parameters

The mean SSR of the 41 data sets for each λ and threshold are taken to give:

Thus **best fit** on average is:

- Threshold, k = -1.5
- Model Parameter, $\lambda = 0.98$

Also:

- Best fit model parameter always $0.9 < \lambda < 1.0$
- Thus **GEV better than GPD** for bridge traffic loading?

Likelihood Ratio Test I

Using the LR test which applies to nested models:

- Determine of GEV or GPD (or neither) better represents the data
- Calculate the statistical significance of the representation

Calculate:

- **Standard Error of Regression** (SER) the mean error per data point: SSR/*n*
- The LR statistic then is:

$$LR = n(\log SER_P - \log SER_F)$$

Where:

- *P*-SER of partial model fit (GEV or GPD)
- *F*-SER of full model fit (BCGEV)

Likelihood Ratio Test II

This **LR statistic** is approx. χ^2 - distributed with 1 degree of freedom:

- For 95% significance level critical value is 3.842
- For 99% significance level critical value is 6.635

Hypothesis: partial model adequately represents data:

• **Reject** if LR statistic greater than critical value at chosen significance level

Significance Testing I

For the **GEV** distribution:

NB: **Reject** hypothesis if LR statistic > critical value

Thus:

- GEV not statistically significant for most thresholds
- For about k = +1.5 and above, GEV is significant (shaded area)

Significance Testing II

For the **GPD** distribution:

NB: **Reject** hypothesis if LR statistic > critical value

Thus:

• GPD not statistically significant for all thresholds

Load Effect Prediction I

For each span and load effect, extrapolate the BCGEV fit:

Bridge Length 40 m

Load Effect Prediction II

The **BCGEV distribution** predictions of lifetime load effect by threshold:

Load Effect Prediction III

Comparison of different prediction methods:

- **Conventional**: GEV model, ignoring different loading event types
- **GEV**: using CDS to account for different loading event types
- **BCGEV**, k = -2.5: considers all data and uses CDS
- **BCGEV**, k = -1.5: the 'global optimum' threshold identified previously

Comparison with GPD not included as the best fit model parameter λ was never found to be close to zero for this data.

Load Effect Prediction IV

Comparison of different prediction methods:

Conclusions I

- The Box-Cox-GEV model allows the data to determine the appropriate form of extreme value analysis.
- The BCGEV model has been extended with Composite Distribution Statistics (CDS) to account for the different loading event types.
- The **BCGEV** model is a better fit than the GEV and GPD models with considerable statistical significance, for almost all thresholds considered.
- Bridge traffic load effect data lies strongly in the domain of the GEV distribution.

Conclusions II

- An optimum threshold level to apply to daily maximum load effect has been identified, k = -1.5.
- The BCGEV model is stable for k < 0, i.e. thresholds below the mean daily maximum load effect.
- The BCGEV model gives slightly higher lifetime load effect predictions that other methods.
- The BCGEV model predictions were found to be more sensitive to different loading event types than other models.

Overall Conclusion:

The BCGEV model is more flexible and so more sympathetic to the data, giving increased confidence to load effect predictions.

Colin C. Caprani & Eugene J. OBrien Dublin Institute of Technology & University College Dublin

ICOSSAR '09

13 September – 17 September 2009,

Osaka, Japan

Estimating Extreme Highway Bridge Traffic Load Effects

Blank